If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-8c-15=-4
We move all terms to the left:
3c^2-8c-15-(-4)=0
We add all the numbers together, and all the variables
3c^2-8c-11=0
a = 3; b = -8; c = -11;
Δ = b2-4ac
Δ = -82-4·3·(-11)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-14}{2*3}=\frac{-6}{6} =-1 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+14}{2*3}=\frac{22}{6} =3+2/3 $
| 8p-4=18 | | 3c^2+4c-11=4 | | 124+27+2x+1=180 | | 4(2x+5)-5(3x-7)=0 | | 2x-40=580 | | 25+74+x=180 | | x+114=111 | | -12/7y=-15 | | 3c^2+8c-11=0 | | 2(x-2)+3(x+1)=6x+5 | | 10d+5=30 | | (6x+50)+(5x+8)+(4x+20)+(72)=360 | | -5m+25=-70 | | 38=8+3n | | 3c^2-14c+7=0 | | (6x50)+(5x+8)+(4x+20)+(72)=360 | | 43x-2=256 | | 0.1x+0.2=2.5 | | 2x(72)-43=360 | | 2/3x+6=3/2x-2 | | (2x-32)+(2x-43)+(66)+(x+9)=360 | | 2+2(2x+3)=2(3x+1)+3 | | 3-7^2x+5=1 | | 2(4x+2)+3=31 | | 2(3x-1)+1=11 | | (r-2)^3=0 | | 3c^2+10c-17=-9 | | 10-2x=6x-6 | | m²=62 | | 7x+4-6x=8 | | 3c^2-14c+4=4 | | 2(2.7182)^x=50 |